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Gaussian white noise as a many-particle process: 
the Kardar-Parisi-Zhang equation 
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Abstract A new approach is proposed to derive a &hastic differentid equation from a 
Master equation. Staning'from the Liouvillian in a Fock space formulation and using a 
functional integral representation in terms of coherent states we get the corresponding 
Langevin equation. As examples aggregation and segresation processes with different 
probability rates are analysed. In the case of a state,dependent growth rate it results in a 
generalized Kardar-Parisi-Bang equation [7] inc1udi"g the kind of noise which is a purely 
Gaussian one in this model. 

There are different levels to study mcsoscopic systems including fluctuations [l, 21. 
Langevin's theory of Brownian motion became the prototype for many other models. 
The separation of time scales has to be regarded as an essential assumption in such 
an approach. The slowly changing degrees of freedom are considered disconnected 
from the rapid changing ones. This procedure leads simply to a differential equation 
with an additive coupling of the deterministic and the stochastic parts. However, the 
kind of stochasticity included in the equation is to be considered as an input for the 
model. On the mesoscopic level of description it cannot be deduced from more general 
principles. In most situations a simple Gaussian distribution is applied, above all 
because of its simplicity. 

Hence, it seems to be necessary to establish a more microscopic approach in which 
all degrees of freedom are included without a timescale separation from the beginning. 
With other words every considered degree of freedom should contribute as well as too 
the deterministic as to the stochastic part of the corresponding dynamic. equation. 
Therefore it is the aim of this paper to propose a consistent and closed scheme to 
elucidate the structure of the stochastic differential equation starting from a more 
microscopic approach based on a Master equation (see equation (1)) which can be 
derived under very general conditions characteristic for Markov processes [l,  21. In 
our approach the transition probabilities occumng in the Master equation will be 
specified in accordance with the physical situation. As an example we will discuss the 
aggregation process in the reaction limited growth regime [6,7]. '  

The usual way deriving stochastic differential equations consists in an approximative 
treatment of Master equations in the limit'of small transfer iie. the transition prob-~ 
abilities are assumed to be negligible for large changes in the considered variables. In 
this case one can derive via a Kramers-Moyal expansion or van Kampen's expansion 
[1,2] a Fokker-Planck type equation which will be reduced to the ordinary Fokkcr- 
PIanck equation (FP) if only second order moments of the transition probability are 
taken into account. The FP is equivalent~to a Langevin equation. 
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Here we proceed in another direction. We start from a Master equation written in 
terms of creation and annihilation operators in a Fock space representation introduced 
by Doi [3] and further developed in [4] and [5]. The advantage of this procedure is 
to give a closed scheme for finding out kinetic equations demonstrated recently [ 6 ]  in 
a fermionic approach. However, there has been no derivation of explicit noise terms 
up to now. 

Here we use the bosonic formalism in terms of coherent states which allows to 
derive stochastic differential equations for certain processes. From the beginning all 
degrees of freedom will be considered likewise. The separation into different time 
scales is only determined through the probabilities by which elementary microscopic 
processes are realized. For special applications we need only the assumption that the 
creation of an additional particle does not change the state of the system decisively 
provided there is a large number of particles available. The mathematical formulation 
of this approximation is given later in (13). 

The paper is organized as follows.. First we briefly discuss the Fock space formalism 
for bosonic syst,ems. Further the functional integral representation for the states of the 
system is established where we follow [SI in a slightly modified form. Aj a simple 
example we consider aggregation and segregation of particles on a lattice with different 
but constant probabilities per time interval. In this case we get a stochastic differential 
equation. A more complicated example is the aggregation process with a growth velocity 
dependent locally on the considered-state and its neighbouring ones. There results a 
stochastic differentia1 equation for a growing interface which reduces in the limit of 
small gradients ((see equation (24)) to the.Kardar-Parisi-Zhang equation (KPZ). 

The quantities of interest are occupation numbers n ={nJ on a d-dimensional 
lattice, where i is the number of a lattice site. Our approach is based on a Master 
equation for the probabilities F(n, t )  

8,F(n, t )  = L'F(n, t )  (1) 

L' is an appropriate linear operator specified for the examples investigated below. 

a Hilbert-space: 
According to [3-51 the probabilities F(n, t) and the operator L' are mapped into 

F(n, t)JIF(t)) 

L ' J L .  
The rate equation (1) corresponds to an equation in the Hilbert-space 

J,IF((f))=LIF(r)) (2) 
which has to be solved. 

with 
A complete basis In) with a scalar product (n / m ) = I I ;  {ni!6m,.n,} is introduced [4,5] 

IF(r)) =C JYR Oln). (3) 
n 

Creation and annihilation operators are defined [4,5] as well as the inverse of the 
creation operators which prove to be useful for the models discussed below. 

(4Q) c i )  + ... n j . . . ) = J . . .  n ; + ~  ...) 

(&-'I ... n , + l  ... )=I ... ni...). 
c,J ... n j . . . ) = n j l . . . n j - l  ...) (4b) 

(4c) 
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Since there is no restriction to the occupation numbers the creation and  annihilation^ 
operators obey bosonic commutation relations. 

The average of a physical quantity B ( n )  is given by [3-51: 

c F(n, t M n )  
{",I 

= (slBIF(t))  ( 5 )  

with (sl=(Ol eElcl and ( s lF( t ) )=  1. 

( 2 )  and (5):  
A simple relation for the dynamics of averaged quantities follows from equations 

(6) 
Next we define coherent states as the eigenstates of the creation operators. They 

a,(B(t))=(sjBLIF( t ) ) .  . 

are given by: 

la) = eac*lO). (7) 
Here, the ai are complex numbers. For real ai we define normalized coherent states 
as la)N = e-'jeilru) which-correspond to a Poisson distribution for the'ni with average 
values a,. 

Using the completeness of the~wherent states we find for the solution of equation 
(2) a path integral representation (compare [ 5 ] ) .  

IF( t ) )  = I n [dTi(T)dai(7)]  e-S1a(3,..(.)1+',(.,(~)-.,(0)) I f f ( t ) ) N  

with IF(O))= Ia(O)), (8) 
and 

s[ Q'(.T), a( T ) ]  dT{ in( T)a,a'( 7 )  - (-in( T)I&( T ) ) N } ,  J d 
Here ( ~ 1 L I f i ) ~  =(y]LIfi)(ylp)-'  are normalized matrix elements. For simplicity we 
have assumed the system to,be in a normalized coherent state at the beginning. 

Writing equation (8) as 

 we get the probability to find the-system in a normalized coherent state at time t :  

Equations (2 ) ,  ( 5 )  and (10) provide a general tool for treating various,problems as 
diffusion, chemical reaction or aggregation processes. 

Next we consider a simple model for deposition of particles on a lattice: P&icles 
are deposited with probability (U + u2/2)dt  and removed from the lattice withprobabil- 
ity u z d t / 2  during dt. v and U' are constant rates and U > 0. The evolution of the system 
is described by equation (2) with the Liouvillian: 

U' 
(11) 
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Using equation (5) and the commutation relations for the operators we get for the 
occupation numbers: 

( n i ( 0 ) = ( n i ( o ) ) + u r  (12a) 

( ( n t ( t )  - (n i ( t ) ) )* )  = (d+ u)t .  (126) 
Expressions of this kind are well known from processes with Gaussian white noise. 

this reason we write: 
We will derive a stochastic differential equation for the occupation numbers. For 

c:IFW)='IF(t)) (13) 
which is approximately fulfilled if the system starts from a coherent or deterministic 
state with (n(O))>>l. Using equation (13) the Liouvillian can be written as: 

3 U2 
Lo = E  u[cT - 11 +- [( 4 2 - 2 c ;  + 11 . 

i I 2 (14) 

Hence the action is 

S[a ( r ) ,  m(r ) ]  = jr dr 
0 :  

The transformation [4,51 

W(T) + W ( T )  - il 
yields an equivalent action: 

U 2  
x exp( -jo' dr  f: [ hi( r)[J,ai( r )  - U] +- d (7) 

2 

Equation (18) is the well known functional integral representation for a stochastic 
differential equation [9]. That means the aj( t )  obey 

J , a , ( t ) = u + & ( f )  (19) 

( & ( t ) )  = 0 

where the &(f) are Gaussian white noise terms with 

( & ( t ) ,  &(t'))  = u%+?(t- t ' ) .  
Provided the characteristic time of the noise (r,Xu-*) is much less than the one for 
the growth (rgrxu-'), or equivalently u2>>u, the standard deviation of ori is much 
greater than the one for nj if the system is in the state I&. For large values the n; 
can be understood as continuous quantities. Hence, the nj obey equation (19) as well 
as the a;. 

(20) 
Equation (20) is a stochastic differential equation for the occupation numbers. It gives 
a description equivalent to the rate equation (1). The first and second moments derived 
from equation (20) are the ones given in equations (12). 

J,n.( t )  = U + &( t ) .  
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The Liouvillian (11) gives a simple model for growing interfaces on a d-dimensional 
substrate if we identify the interface heights with h = In ( I  is the lattice spacing). A 
more realistic version should take into account diffusion on the surface and the 
dependence of the growth rate U on h itself. The first extension is introduced by means 
of the diffusion-Liouvillian LD [5]., the second one by making the simple ansatz 
~ u = , y m .  (V is the discrete form of tlie usual operator here.) That means 
physically, the deposition rate is proportional to the interface segment spanned between 
the next neighbours of the site i. We get as Liouvillian: 

with ~LD = vc+V*c, and v, ,y are constant rates. v is a measure for the surface tension 
and ,y is proportional to the deposition rate per surface area. 

For the action we obtain after the transformation (16): %I 

S [ a ( r ) ,  d T ) l  

-E [ 4 0 ) - 4 t ) l .  (22) 
i 

Following the same arguments as above we get for the heights h(x, t )  = hi(t) (x is the 
position of the site i ) :  

(23) J,h(x, t ) =  viZV2h(x, t )+ ,yIJ l+[Vh(x ,  f)]'+l.$(x, t )  

with 

(S(x, 0)  = 0 ([(x, t),gyx', t ' ) )=u*Ids(x--x')s( t - t ' ) .  

Equation (23) is a stochastic differential equation for the height of an interface growing 
on a substrate. 

Assuming Vh(x, t)<< 1 we obtain by expanding the square root in equation (23): 

a,h(x, t )  = vZ2V2h(x, t )+&yl[Vh(x,  f)]'+,yZ+![(x, t ) .  (24) 

Equation (24) is the well known Kardar-Parisi-Zhang equation investigated in many 
papers (for a review see [SI). However, equation (23) gives a more precise description 
since the approximation Vh(x,  t)cc 1 cannot be ensured. 

In this paper we have proposed a method for deriving a stochastic differential 
equation from a rate equation. Contrary~ to other approaches, e.g. van Kampen's 
expansion, a Fock space formalism is used which leads immediately to a path integral 
representation for probabilities. A simple model for particle deposition on a lattice is 
considered. The derived stochastic differential equation gives exact moments of first 
and second order. A more realistic model for growing interfaces results in a generaliz- 
ation of the Kardar-Parisi-Zhang equation. The latter one is obtained as an approxi- 
mation. 

Further wotk on models with coloured noise is in progress. 
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